Mr. Chris Mcclanahan has implemented a TV-L1 based Optical Flow based on LibJacket (see here). However, is is not compatible the newer version of LibJacket...well...there is no more LibJacket. Now AccelerEyes announced ArrayFire, which has a huge gap to LibJacket. Thus, I managed modified his work as the following:
//
// Chris McClanahan - 2011
// Modified by Chao-Hui Huang 2012
//
// Adapted from: http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php
// "An Improved Algorithm for TV-L1 Optical Flow"
//
// More info: http://mcclanahoochie.com/blog/portfolio/gpu-tv-l1-optical-flow-with-libjacket/
//
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <opencv/cv.h>
#include <opencv/cxcore.h>
#include <opencv/highgui.h>
#include <arrayfire.h>
using namespace std;
using namespace cv;
using namespace af;
// control
const float pfactor = 0.7; // scale each pyr level by this amount
const int max_plevels = 9; // number of pyramid levels
const int max_iters = 6; // u v w update loop
const float lambda = 40; // smoothness constraint
const int max_warps = 3; // warping u v warping
const int min_img_sz = 20; // min mxn img in pyramid
#define TIMING 0 // warmup, then average multiple runs
// functions
int grab_frame(Mat& img, char* filename);
void create_pyramids(array& im1, array& im2, array& pyr1, array& pyr2);
void process_pyramids(array& pyr1, array& pyr2, array& u, array& v);
void tv_l1_dual(array& u, array& v, array& p, array& w, array& I1, array& I2, int level);
void optical_flow_tvl1(Mat& img1, Mat& img2, Mat& u, Mat& v);
void display_flow(array& I2, array& u, array& v);
void MatToFloat(const Mat& thing, float* thing2);
void FloatToMat(float const* thing, Mat& thing2);
// misc
int plevels = max_plevels;
const int n_dual_vars = 6;
static int cam_init = 0;
static int pyr_init = 0;
VideoCapture capture;
int pyr_M[max_plevels + 1];
int pyr_N[max_plevels + 1];
array pyr1, pyr2;
// macros
#define MSG(msg,...) do { \
fprintf(stdout,__FILE__":%d(%s) " msg "\n", \
__LINE__, __FUNCTION__, ##__VA_ARGS__); \
fflush(stdout); \
} while (0)
#define M_PI 3.14159265358979323846
// ===== main =====
void optical_flow_tvl1(Mat& img1, Mat& img2, Mat& mu, Mat& mv) {
// extract cv image 1
Mat mi1(img1.rows, img1.cols, CV_8UC1);
cvtColor(img1.t(), mi1, CV_BGR2GRAY);
mi1.convertTo(mi1, CV_32FC1);
float* fi1 = (float*)mi1.data;
array I1 = array(img1.rows, img1.cols, fi1) / 255.0f;
// extract cv image 2
Mat mi2(img2.rows, img2.cols, CV_8UC1);
cvtColor(img2.t(), mi2, CV_BGR2GRAY);
mi2.convertTo(mi2, CV_32FC1);
float* fi2 = (float*)mi2.data;
array I2 = array(img2.rows, img2.cols, fi2) / 255.0f;
#if TIMING
// runs
int nruns = 4;
// warmup
create_pyramids(I1, I2, pyr1, pyr2);
f32 ou, ov;
process_pyramids(pyr1, pyr2, ou, ov);
// timing
timer::tic();
for (int i = 0; i < nruns; ++i) {
create_pyramids(I1, I2, pyr1, pyr2);
process_pyramids(pyr1, pyr2, ou, ov);
}
MSG("fps: %f", 1.0f / (timer::toc() / (float)nruns));
#else
// timing
timer::tic();
// pyramids
create_pyramids(I1, I2, pyr1, pyr2);
// flow
array ou, ov;
process_pyramids(pyr1, pyr2, ou, ov);
// timing
MSG("fps: %f", 1.0f / (timer::toc()));
#endif
// output
#if 1
// to opencv
FloatToMat((float*)ou.T().host(), mu);
FloatToMat((float*)ov.T().host(), mv);
#else
// to libjacket
display_flow(I2, ou, ov);
#endif
}
void MatToFloat(const Mat& thing, float* thing2) {
int tmp = 0;
for (int i = 0; i < thing.rows; i++) {
const float* fptr = thing.ptr<float>(i);
for (int j = 0; j < thing.cols; j++)
{ thing2[tmp++] = fptr[j]; }
}
}
void FloatToMat(float const* thing, Mat& thing2) {
int tmp = 0;
for (int i = 0; i < thing2.rows; ++i) {
float* fptr = thing2.ptr<float>(i);
for (int j = 0; j < thing2.cols; ++j)
{ fptr[j] = thing[tmp++]; }
}
}
void display_flow(array& I2, array& u, array& v) {
#if 1
// show in libjacket
palette("bone");
subfigure(2, 2, 1); imgplot(I2); title("input");
subfigure(2, 2, 2); imgplot(u); title("u");
subfigure(2, 2, 3); imgplot(v); title("v");
subfigure(2, 2, 4); imgplot((abs(v) + abs(u))); title("u+v");
// int M = I2.dims()[0];
// int N = I2.dims()[1];
// f32 idx, idy; meshgrid(idx, idy, f32(seq(0,N-1,3)), f32(seq(0,M-1,3)));
// quiver(idx,idy,u,v);
draw();
#else
// show in opencv
int M = I2.dims()[0];
int N = I2.dims()[1];
Mat mu(M, N, CV_32FC1);
Mat mv(M, N, CV_32FC1);
FloatToMat(u.T().host(), mu);
FloatToMat(v.T().host(), mv);
imshow("u", mu);
imshow("v", mv);
#endif
}
void display_flow(const Mat& u, const Mat& v) {
#if 0
cv::Mat magnitude, angle, bgr;
cv::cartToPolar(u, v, magnitude, angle, true);
double mag_max, mag_min;
cv::minMaxLoc(magnitude, &mag_min, &mag_max);
magnitude.convertTo(magnitude, -1, 1.0 / mag_max);
cv::Mat _hsv[3], hsv_image;
_hsv[0] = angle;
_hsv[1] = Mat::ones(angle.size(), CV_32F);
_hsv[2] = magnitude;
cv::merge(_hsv, 3, hsv_image);
#else
cv::Mat magnitude, angle, bgr;
Mat hsv_image(u.rows, u.cols, CV_8UC3);
for (int i = 0; i < u.rows; ++i) {
const float* x_ptr = u.ptr<float>(i);
const float* y_ptr = v.ptr<float>(i);
uchar* hsv_ptr = hsv_image.ptr<uchar>(i);
for (int j = 0; j < u.cols; ++j, hsv_ptr += 3, ++x_ptr, ++y_ptr) {
hsv_ptr[0] = (uchar)((atan2f(*y_ptr, *x_ptr) / M_PI + 1) * 90);
hsv_ptr[1] = hsv_ptr[2] = (uchar) std::min<float>(
sqrtf(*y_ptr * *y_ptr + *x_ptr * *x_ptr) * 20, 255.0);
}
}
#endif
cv::cvtColor(hsv_image, bgr, CV_HSV2BGR);
cv::imshow("optical flow", bgr);
}
int grab_frame(Mat& img, char* filename) {
// camera/image setup
if (!cam_init) {
if (filename != NULL) {
capture.open(filename);
} else {
float rescale = 0.615;
int w = 640 * rescale;
int h = 480 * rescale;
capture.open(0); //try to open
capture.set(CV_CAP_PROP_FRAME_WIDTH, w); capture.set(CV_CAP_PROP_FRAME_HEIGHT, h);
}
if (!capture.isOpened()) { cerr << "open video device fail\n" << endl; return 0; }
capture >> img; capture >> img;
if (img.empty()) { cout << "load image fail " << endl; return 0; }
namedWindow("cam", CV_WINDOW_KEEPRATIO);
printf(" img = %d x %d \n", img.cols, img.rows);
cam_init = 1;
}
// get frames
capture.grab();
capture.retrieve(img);
imshow("cam", img);
if (waitKey(10) >= 0) { return 0; }
else { return 1; }
}
void gen_pyramid_sizes(array& im1) {
dim4 mnk = im1.dims();
float sM = mnk[0];
float sN = mnk[1];
// store resizing
for (int level = 0; level <= plevels; ++level) {
if (level == 0) {
} else {
sM *= pfactor;
sN *= pfactor;
}
pyr_M[level] = (int)(sM + 0.5f);
pyr_N[level] = (int)(sN + 0.5f);
MSG(" pyr %d: %d x %d ", level, (int)sM, (int)sN);
if (sM < min_img_sz || sN < min_img_sz) { plevels = level; break; }
}
}
void create_pyramids(array& im1, array& im2, array& pyr1, array& pyr2) {
if (!pyr_init) {
// list of h,w
gen_pyramid_sizes(im1);
// init
pyr1 = zeros(pyr_M[0], pyr_N[0], plevels);
pyr2 = zeros(pyr_M[0], pyr_N[0], plevels);
pyr_init = 1;
}
// create
for (int level = 0; level < plevels; level++) {
if (level == 0) {
pyr1(span, span, level) = im1;
pyr2(span, span, level) = im2;
} else {
seq spyi = seq(pyr_M[level - 1]);
seq spxi = seq(pyr_N[level - 1]);
array small1 = resize(pyr1(spyi, spxi, level - 1), pyr_M[level], pyr_N[level], AF_RSZ_Bilinear);
array small2 = resize(pyr2(spyi, spxi, level - 1), pyr_M[level], pyr_N[level], AF_RSZ_Bilinear);
seq spyo = seq(pyr_M[level]);
seq spxo = seq(pyr_N[level]);
pyr1(spyo, spxo, level) = small1;
pyr2(spyo, spxo, level) = small2;
}
}
}
void process_pyramids(array& pyr1, array& pyr2, array& ou, array& ov) {
array p, u, v, w;
// pyramid loop
for (int level = plevels - 1; level >= 0; level--) {
if (level == plevels - 1) {
u = zeros(pyr_M[level], pyr_N[level]);
v = zeros(pyr_M[level], pyr_N[level]);
w = zeros(pyr_M[level], pyr_N[level]);
p = zeros(pyr_M[level], pyr_N[level], n_dual_vars);
} else {
float rescale_u = pyr_N[level + 1] / (float)pyr_N[level];
float rescale_v = pyr_M[level + 1] / (float)pyr_M[level];
// propagate
array u_ = resize(u, pyr_M[level], pyr_N[level], AF_RSZ_Bilinear) * rescale_u;
array v_ = resize(v, pyr_M[level], pyr_N[level], AF_RSZ_Bilinear) * rescale_v;
array w_ = resize(w, pyr_M[level], pyr_N[level], AF_RSZ_Bilinear);
array p_ = zeros(pyr_M[level], pyr_N[level], n_dual_vars);
gfor(array ndv, n_dual_vars) {
p_(span, span, ndv) = resize(p(span, span, ndv), pyr_M[level], pyr_N[level], AF_RSZ_Bilinear);
}
u = u_; v = v_; p = p_; w = w_;
}
// extract
seq spy = seq(pyr_M[level]);
seq spx = seq(pyr_N[level]);
array I1 = pyr1(spy, spx, level);
array I2 = pyr2(spy, spx, level);
// ===== core ====== //
tv_l1_dual(u, v, p, w, I1, I2, level);
// ===== ==== ====== //
}
// output
ou = u;
ov = v;
}
void warping(array& Ix, array& Iy, array& It, array& I1, array& I2, array& u, array& v) {
dim4 mnk = I2.dims();
int M = mnk[0];
int N = mnk[1];
array idx = tile(array(seq(N)).T(), M, 1) + 1;
array idy = tile(array(seq(M)), 1, N) + 1;
/* ^ BUG: idx idy should ideally be [0-N); ^ */
array idxx0 = idx + u;
array idyy0 = idy + v;
array idxx = max(1, min(N - 1, idxx0));
array idyy = max(1, min(M - 1, idyy0));
// interp2 based warp ()
It = interp(idy, idx, I2, idyy, idxx) - I1;
// interp2 based warp ()
array idxm = max(1, min(N - 1, idxx - 1.f));
array idxp = max(1, min(N - 1, idxx + 1.f));
array idym = max(1, min(M - 1, idyy - 1.f));
array idyp = max(1, min(M - 1, idyy + 1.f));
Ix = interp(idy, idx, I2, idy, idxp) - interp(idy, idx, I2, idy, idxm);
Iy = interp(idy, idx, I2, idyp, idx) - interp(idy, idx, I2, idym, idx);
/* ^ BUG: interp2 should be cubic; that may fix things; ^ */
}
void dxym(array& Id, array I0x, array I0y) {
// divergence
dim4 mnk = I0x.dims();
int M = mnk[0];
int N = mnk[1];
array x0 = zeros(M, N);
array x1 = zeros(M, N);
x0(seq(M - 1), seq(N)) = I0x(seq(M - 1), seq(N));
x1(seq(1,M-1), seq(N)) = I0x(seq(1,M-1), seq(N));
array y0 = zeros(M, N);
array y1 = zeros(M, N);
y0(seq(M), seq(N - 1)) = I0y(seq(M), seq(N - 1));
y1(seq(M), seq(1,N-1)) = I0y(seq(M), seq(1,N-1));
Id = (x0 - x1) + (y0 - y1);
}
void dxyp(array& Ix, array& Iy, array& I0) {
// shifts
dim4 mnk = I0.dims();
int M = mnk[0];
int N = mnk[1];
array y0 = I0;
array y1 = I0;
y0(seq(0, M - 2), span) = I0(seq(1, M - 1), span);
array x0 = I0;
array x1 = I0;
x0(span, seq(0, N - 2)) = I0(span, seq(1, N - 1));
Ix = (x0 - x1); Iy = (y0 - y1);
}
void tv_l1_dual(array& u, array& v, array& p, array& w, array& I1, array& I2, int level) {
try {
float L = sqrtf(8.0f);
float tau = 1 / L;
float sigma = 1 / L;
float eps_u = 0.01f;
float eps_w = 0.01f;
float gamma = 0.02f;
array u_ = u;
array v_ = v;
array w_ = w;
for (int j = 0; j < max_warps; j++) {
array u0 = u;
array v0 = v;
// warping
array Ix, Iy, It; warping(Ix, Iy, It, I1, I2, u0, v0);
// gradients
array I_grad_sqr = max(float(1e-6), array(pow(Ix, 2) + pow(Iy, 2) + gamma * gamma));
// inner loop
for (int k = 0; k < max_iters; ++k) {
// dual =====
// shifts
array u_x, u_y; dxyp(u_x, u_y, u_);
array v_x, v_y; dxyp(v_x, v_y, v_);
array w_x, w_y; dxyp(w_x, w_y, w_);
// update dual
p(span, span, 0) = (p(span, span, 0) + sigma * u_x) / (1 + sigma * eps_u);
p(span, span, 1) = (p(span, span, 1) + sigma * u_y) / (1 + sigma * eps_u);
p(span, span, 2) = (p(span, span, 2) + sigma * v_x) / (1 + sigma * eps_u);
p(span, span, 3) = (p(span, span, 3) + sigma * v_y) / (1 + sigma * eps_u);
p(span, span, 4) = (p(span, span, 4) + sigma * w_x) / (1 + sigma * eps_w);
p(span, span, 5) = (p(span, span, 5) + sigma * w_y) / (1 + sigma * eps_w);
// normalize
array reprojection = max(1, sqrt(pow(p(span, span, 0), 2) + pow(p(span, span, 1), 2) +
pow(p(span, span, 2), 2) + pow(p(span, span, 3), 2)));
p(span, span, 0) = p(span, span, 0) / reprojection;
p(span, span, 1) = p(span, span, 1) / reprojection;
p(span, span, 2) = p(span, span, 2) / reprojection;
p(span, span, 3) = p(span, span, 3) / reprojection;
reprojection = max(1, sqrt(pow(p(span, span, 4), 2) + pow(p(span, span, 5), 2)));
p(span, span, 4) = p(span, span, 4) / reprojection;
p(span, span, 5) = p(span, span, 5) / reprojection;
// primal =====
// divergence
array div_u; dxym(div_u, p(span, span, 0), p(span, span, 1));
array div_v; dxym(div_v, p(span, span, 2), p(span, span, 3));
array div_w; dxym(div_w, p(span, span, 4), p(span, span, 5));
// old
u_ = u;
v_ = v;
w_ = w;
// update
u = u + tau * div_u;
v = v + tau * div_v;
w = w + tau * div_w;
// indexing
array rho = It + mul((u - u0), Ix) + mul((v - v0), Iy) + gamma * w;
array idx1 = rho < -tau * lambda * I_grad_sqr;
array idx2 = rho > tau * lambda * I_grad_sqr;
array idx3 = abs(rho) <= tau * lambda * I_grad_sqr;
u = u + tau * lambda * (mul(Ix, idx1)) ;
v = v + tau * lambda * (mul(Iy, idx1)) ;
w = w + tau * lambda * gamma * idx1;
u = u - tau * lambda * (mul(Ix, idx2)) ;
v = v - tau * lambda * (mul(Iy, idx2)) ;
w = w - tau * lambda * gamma * idx2;
u = u - mul(rho, mul(idx3, Ix / I_grad_sqr));
v = v - mul(rho, mul(idx3, Iy / I_grad_sqr));
w = w - mul(rho, mul(idx3, gamma / I_grad_sqr));
// propagate
u_ = 2 * u - u_;
v_ = 2 * v - v_;
w_ = 2 * w - w_;
}
// output
// const unsigned hw[] = {3, 3};
u = medfilt(u, 3, 3);
v = medfilt(v, 3, 3);
} /* j < warps */
} catch (af::exception& e) {
cout << e.what() << endl;
throw;
}
}
// =======================================
int main(int argc, char* argv[]) {
// video file or usb camera
Mat cam_img, prev_img, disp_u, disp_v;
int is_images = 0;
if (argc == 2) { grab_frame(prev_img, argv[1]); } // video
else if (argc == 3) {
prev_img = imread(argv[1]); cam_img = imread(argv[2]);
is_images = 1;
} else { grab_frame(prev_img, NULL); } // usb camera
// results
int mm = prev_img.rows; int nn = prev_img.cols;
disp_u = Mat::zeros(mm, nn, CV_32FC1);
disp_v = Mat::zeros(mm, nn, CV_32FC1);
printf("img %d x %d \n", mm, nn);
// process main
if (is_images) {
// show
imshow("i", cam_img);
// process files
optical_flow_tvl1(prev_img, cam_img, disp_u, disp_v);
// show
// imshow("u", disp_u);
// imshow("v", disp_v);
display_flow(disp_u, disp_v);
waitKey(0);
// // write
// writeFlo(disp_u, disp_v);
} else {
// process loop
while (grab_frame(cam_img, NULL)) {
try {
// process
optical_flow_tvl1(prev_img, cam_img, disp_u, disp_v);
// frames
prev_img = cam_img.clone();
// show
// imshow("u", disp_u);
// imshow("v", disp_v);
display_flow(disp_u, disp_v);
} catch (af::exception& e) {
cout << e.what() << endl;
throw;
}
}
}
return 0;
}
沒有留言:
張貼留言